Ayrışma, Erozyon ve Tortul Kayaçlar - Yararlanılan Kaynaklar
Metin Referansları
- Affolter, M.D., 2004, On the nature of volcanic lithic fragments: Definition source and evolution.
- Ashley, G.M., 1990, Classification of large-scale subaqueous bedforms: a new look at an old problem-SEPM bedforms and bedding structures: J. Sediment. Res., v. 60, no. 1.
- Ayrton, H., 1910, The origin and growth of ripple-mark: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, v. 84, no. 571, p. 285–310.
- Bagnold, R.A., 1941, The physics of blown sand and desert dunes: Methum, London, UK, p. 265.
- Blatt, H., Middleton, G.V., and Murray, R., 1980, Origin of Sedimentary Rocks: Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA.
- Bouma, A.H., Kuenen, P.H., and Shepard, F.P., 1962, Sedimentology of some flysch deposits: a graphic approach to facies interpretation: Elsevier Amsterdam.
- Cant, D.J., 1982, Fluvial facies models and their application.
- Dickinson, W.R., and Suczek, C.A., 1979, Plate tectonics and sandstone compositions: AAPG Bull., v. 63, no. 12, p. 2164–2182.
- Dunham, R.J., 1962, Classification of carbonate rocks according to depositional textures.
- Eisma, D., 1998, Intertidal deposits: River mouths, tidal flats, and coastal lagoons: CRC Marine Science, Taylor & Francis, CRC Marine Science.
- Folk, R.L., 1974, Petrography of sedimentary rocks: Univ. Texas, Hemphill, Austin, Tex, v. 182.
- Goldich, S.S., 1938, A study in rock-weathering: J. Geol., v. 46, no. 1, p. 17–58.
- Hubert, J.F., 1962, A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones: J. Sediment. Res., v. 32, no. 3.
- Johnson, C.L., Franseen, E.K., and Goldstein, R.H., 2005, The effects of sea level and palaeotopography on lithofacies distribution and geometries in heterozoan carbonates, south-eastern Spain: Sedimentology, v. 52, no. 3, p. 513–536., doi: 10.1111/j.1365-3091.2005.00708.x.
- Karátson, D., Sztanó, O., and Telbisz, T., 2002, Preferred clast orientation in volcaniclastic mass-flow deposits: application of a new photo-statistical method: J. Sediment. Res., v. 72, no. 6, p. 823–835.
- Klappa, C.F., 1980, Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance: Sedimentology, v. 27, no. 6, p. 613–629.
- Longman, M.W., 1981, A process approach to recognizing facies of reef complexes.
- Mckee, E.D., and Weir, G.W., 1953, Terminology for stratification and cross-stratification in sedimentary rocks: Geol. Soc. Am. Bull., v. 64, no. 4, p. 381–390.
- Metz, R., 1981, Why not raindrop impressions? J. Sediment. Res., v. 51, no. 1.
- Nichols, M.M., Biggs, R.B., and Davies, R.A.Jr., 1985, Estuaries, in Coastal Sedimentary Environments: Springer-Verlag: New York, p. 77–173.
- Normark, W.R., 1978, Fan valleys, channels, and depositional lobes on modern submarine fans: characters for recognition of sandy turbidite environments: AAPG Bull., v. 62, no. 6, p. 912–931.
- Pettijohn, F.J., and Potter, P.E., 2012, Atlas and glossary of primary sedimentary structures.
- Plummer, P.S., and Gostin, V.A., 1981, Shrinkage cracks: desiccation or synaeresis? J. Sediment]. Res., v. 51, no. 4.
- Reinson, G.E., 1984, Barrier-island and associated strand-plain systems, in Walker, R.G., editor, Facies Models: Geoscience Canada Reprint Series 1, p. 119–140.
- Stanistreet, I.G., and McCarthy, T.S., 1993, The Okavango Fan and the classification of subaerial fan systems: Sediment. Geol., v. 85, no. 1, p. 115–133.
- Stow, D.A.V., Faugères, J.-C., Viana, A., and Gonthier, E., 1998, Fossil contourites: a critical review: Sediment. Geol., v. 115, no. 1–4, p. 3–31.
- Stow, D.A.V., and Piper, D.J.W., 1984, Deep-water fine-grained sediments: facies models: Geological Society, London, Special Publications, v. 15, no. 1, p. 611–646.
- Udden, J.A., 1914, Mechanical composition of clastic sediments: Geol. Soc. Am. Bull., v. 25, no. 1, p. 655–744.
- Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments: J. Geol., v. 30, no. 5, p. 377–392.
- Yin, D., Peakall, J., Parsons, D., Chen, Z., Averill, H.M., Wignall, P., and Best, J., 2016, Bedform genesis in bedrock substrates: Insights into formative processes from a new experimental approach and the importance of suspension-dominated abrasion: Geomorphology, v. 255, p. 26–38.
Şekil Referansları
- Şekil 5.1: A model of a water molecule, showing the bonds between the hydrogen and oxygen. Dan Craggs. 2009. Public domain. https://commons.wikimedia.org/wiki/File:H2O_2D_labelled.svg
- Şekil 5.2: Dew on a spider’s web. Luc Viatour. 2007. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Spider_web_Luc_Viatour.jpg
- Şekil 5.3: Hydrogen bonding between water molecules. Qwerter. 2011. Public domain. https://commons.wikimedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.svg
- Şekil 5.4: A sodium (Na) ion in solution. Taxman. 2006. Public domain. https://commons.wikimedia.org/wiki/File:Na%2BH2O.svg
- Şekil 5.5: The outer layer of this granite is fractured and eroding away, known as exfoliation. Wing-Chi Poon. 2005. CC BY-SA 2.5. https://en.m.wikipedia.org/wiki/File:GeologicalExfoliationOfGraniteRock.jpg
- Şekil 5.6: The process of frost wedging. Julie Sandeen. 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Mechanical_weathering.png
- Şekil 5.7: The roots of this tree are demonstrating the destructive power of root wedging. Arseny Khakhalin. 2006. CC BY 3.0. https://commons.wikimedia.org/wiki/File:Pine-tree_roots_digging_through_the_asphalt_-_panoramio.jpg
- Şekil 5.8: Tafoni from Salt Point, California. Dawn Endico. 2005. CC BY-SA 2.0. https://commons.wikimedia.org/wiki/File:Tafoni_03.jpg
- Şekil 5.9: Each of these three groups of cubes has an equal volume. Kindred Grey. 2022. CC BY 4.0.
- Şekil 5.10: Generic hydrolysis diagram, where the bonds in mineral in question would represent the left side of the diagram. Unknown author. 2014. CC BY-SA 4.0. https://www.wikiwand.com/en/Hydrolysis#Media/File:Hydrolysis.png
- Şekil 5.11: In this rock, a pyrite cube has dissolved (as seen with the negative “corner” impression in the rock), leaving behind small specks of gold. Matt Affolter (QFL247). 2009. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:GoldinPyriteDrainage_acide.JPG
- Şekil 5.12: This mantle xenolith containing olivine (green) is chemically weathering by hydrolysis and oxidation into the pseudo-mineral iddingsite, which is a complex of water, clay, and iron oxides. Matt Affolter. 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Iddingsite.JPG
- Şekil 5.13: Eroded karst topography in Minerve, France. Hugo Soria. 2005. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Karst_minerve.jpg
- Şekil 5.14: A formation called The Great Heart of Timpanogos in Timpanogos Cave National Monument. Sleeping Bear Dunes National Lakeshore. 2012. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Tica_(7563200350).jpg
- Şekil 5.15: Pyrite cubes are oxidized, becoming a new mineral goethite. Matt Affolter (QFL247). 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:PyOx.JPG
- Şekil 5.16: A hoodoo near Moab, Utah. Qfl247. 2010. GNU Free Documentation License. https://en.wikipedia.org/wiki/File:MoabHoodoo.JPG
- Şekil 5.17: Grand Canyon from Mather Point. Szumyk. 2004. Public domain. https://commons.wikimedia.org/wiki/File:Grand_Canyon-Mather_point.jpg
- Şekil 5.18: Sketch and picture of soil. Carlosblh. 2006. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Estructura-suelo.jpg
- Şekil 5.19: Schematic of the nitrogen cycle. Johann Dréo. 2009. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Nitrogen_Cycle.svg
- Şekil 5.20: Agricultural terracing, as made by the Inca culture from the Andes, helps reduce erosion and promote soil formation, leading to better farming practices. Unknown author. 2007. Public domain. https://www.wikiwand.com/en/Andean_civilizations#Media/File:Pisac006.jpg
- Şekil 5.21: A simplified soil profile, showing labeled layers. Wilsonbiggs. 2021. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Soil_Horizons.svg
- Şekil 5.22: A sample of bauxite. Werner Schellmann. 1965. CC BY-SA 2.5. https://commons.wikimedia.org/wiki/File:Bauxite_with_unweathered_rock_core._C_021.jpg
- Şekil 5.23: A dust storm approaches Stratford, Texas in 1935. George E. Marsh Album via NOAA. 1935. Public domain. https://commons.wikimedia.org/wiki/File:Dust_Storm_Texas_1935.jpg
- Şekil 5.24: Geologic unconformity seen at Siccar Point on the east coast of Scotland. dave souza. 2008. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Siccar_Point_red_capstone_closeup.jpg
- Şekil 5.25: Permineralization in petrified wood. Moondigger. 2005. CC BY-SA 2.5. https://commons.wikimedia.org/wiki/File:Petrified_forest_log_2_md.jpg
- Şekil 5.26: Size categories of sediments, known as the Wentworth scale. Jeffress Williams, Matthew A. Arsenault, Brian J. Buczkowski, Jane A. Reid, James G. Flocks, Mark A. Kulp, Shea Penland, and Chris J. Jenkins via USGS. 2011. Public domain. https://commons.wikimedia.org/wiki/File:Wentworth_scale.png
- Şekil 5.27: A well-sorted sediment (left) and a poorly-sorted sediment (right). Woudloper. 2009. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Sorting_in_sediment.svg
- Şekil 5.28: Degree of rounding in sediments. Woudloper. 2009. Public domain. https://commons.wikimedia.org/wiki/File:Rounding_%26_sphericity_EN.svg
- Şekil 5.29: A sand grain made of basalt, known as a microlitic volcanic lithic fragment. Matt Affolter (QFL247). 2009. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:LvMS-Lvm.jpg
- Şekil 5.30: Hawaiian beach composed of green olivine sand from weathering of nearby basaltic rock. Aren Elliott. 2018. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Panorama_of_Papakolea_green_sand_beach_in_Hawaii_2.jpg
- Şekil 5.31: Megabreccia in Titus Canyon, Death Valley National Park, California. NPS. Unknown date. Public domain. https://commons.wikimedia.org/wiki/File:Titus_Canyon_Narrows.jpg
- Şekil 5.32: Enlarged image of frosted and rounded windblown sand grains. Wilson44691. 2008. Public domain. https://commons.wikimedia.org/wiki/File:CoralPinkSandDunesSand.JPG
- Şekil 5.33: The Rochester Shale, New York. Wilson44691. 2015. Public domain. https://en.m.wikipedia.org/wiki/File:Rochester_Shale_Niagara_Gorge.jpg
- Şekil 5.34: Claystone laminations from Glacial Lake Missoula. Matt Affolter. 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:GLMsed.jpg
- Şekil 5.35: Salt-covered plain known as the Bonneville Salt Flats, Utah. Michael Pätzold. 2008. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Bonneville_salt_flats_pilot_peak.jpg
- Şekil 5.36: Ooids from Joulter’s Cay, The Bahamas. Wilson44691. 2010. Public domain. https://commons.wikimedia.org/wiki/File:Ooids,_Joulter_Cays,_Bahamas.jpg
- Şekil 5.37: Limestone tufa towers along the shores of Mono Lake, California. Yukinobu Zengame. 2005. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Limestone_towers_at_Mono_Lake,_California.jpg
- Şekil 5.38: Travertine terraces of Mammoth Hot Springs, Yellowstone National Park, USA. Frank Schulenburg. 2016. CC BY-SA 4.0. https://en.m.wikipedia.org/wiki/File:Mammoth_Terraces.jpg
- Şekil 5.39: Alternating bands of iron-rich and silica-rich mud, formed as oxygen combined with dissolved iron. Wilson44691. 2008. Public domain. https://commons.wikimedia.org/wiki/File:MichiganBIF.jpg
- Şekil 5.40: A type of chert, flint, shown with a lighter weathered crust. Ra’ike. 2014. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Flint_with_weathered_crust.JPG
- Şekil 5.41: Ooids forming an oolite. Unknown author. 2008. Public domain. https://www.wikiwand.com/en/Oolite#Media/File:OoidSurface01.jpg
- Şekil 5.42: Fossiliferous limestone (with brachiopods and bryozoans) from the Kope Formation of Ohio. Jim Stuby. 2010. Public domain. https://commons.wikimedia.org/wiki/File:Limestone_etched_section_KopeFm_new.jpg
- Şekil 5.43: Close-up on coquina. Wilson44691. 2008. Public domain. https://commons.wikimedia.org/wiki/File:CoquinaClose.jpg
- Şekil 5.44: Anthracite coal, the highest grade of coal. USGS. 2007. Public domain. https://commons.wikimedia.org/wiki/File:Coal_anthracite.jpg
- Şekil 5.45: Gyprock, a rock made of the mineral gypsum. James St. John. 2016. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Gyprock_(Castile_Formation,_Upper_Permian_Eddy_County,_New_Mexico.jpg
- Şekil 5.46: Sedimentary rock identification chart. Virginia Sisson. Unknown date. CC BY-NC-SA 4.0. Figure 2.13 from https://uhlibraries.pressbooks.pub/historicalgeologylab/chapter/chapter02-earthmaterials/
- Şekil 5.47: Horizontal strata. Matt Affolter (QFL247). 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:SEUtahStrat.JPG
- Şekil 5.48: Students from the University of Wooster examine beds of Ordovician limestone in central Tennessee. Wilson44691. 2007. Public domain. https://commons.wikimedia.org/wiki/File:OrdOutcropTN.JPG
- Şekil 5.49: Image of the classic Bouma sequence. Mikesclark. 2013. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Turbidite_from_Pigeon_Pt_Fm_at_Pescadero_Beach,_CA.jpg
- Şekil 5.50: Bedforms from under increasing flow velocities. US Dept. of Transportation Federal Highway Administration. 2013. Public domain. https://commons.wikimedia.org/wiki/File:Bedforms_under_various_flow_regimes.pdf
- Şekil 5.51: Subtle lines across this sandstone (trending from the lower left to upper right) are parting lineations. Matt Affolter (a.k.a. QFL247). 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:PartingLineation.JPG
- Şekil 5.52: Modern current ripple in sand from the Netherlands. Heinz-Josef Lücking. 2007. CC BY-SA 3.0 DE. https://commons.wikimedia.org/wiki/File:Rippelbildungen_am_Strand_von_Spiekeroog.JPG
- Şekil 5.53: A bidirectional flow creates this symmetrical wave ripple. Matt Affolter (QFL247). 2009. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:WaveRipple.JPG
- Şekil 5.54: Climbing ripple deposit from India. DanHobley. 2011. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Climbing_ripples.JPG
- Şekil 5.55: Lithified cross-bedded dunes from the high country of Zion National Park, Utah. Dr. Igor Smolyar, NOAA/NESDIS/NODC. 2010. Public domain. https://commons.wikimedia.org/wiki/File:Cross-bedding_Of_Sandstone_Near_Mt_Carmel_Road_Zion_Canyon_Utah.jpg
- Şekil 5.56: Modern sand dune in Morocco. Rosino. 2005. CC BY-SA 2.0. https://en.wikipedia.org/wiki/File:Morocco_Africa_Flickr_Rosino_December_2005_84514010.jpg
- Şekil 5.57: Herringbone cross-bedding from the Mazomanie Formation, upper Cambrian of Minnesota. James St. John. 2015. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Herringbone_cross-stratified_quartzose_sandstones_with_trace_fossils_(Mazomanie_Formation,_Upper_Cambrian;_riverside_cliff,_western_side_of_the_St._Croix_River,_northeast_of_Lookout_Point,_Minnesota,_USA)_4_(18812079220).jpg
- Şekil 5.58: Hummocky-cross stratification, seen as wavy lines throughout the middle of this rock face. Matt Affolter (QFL247). 2010. CC BY-SA 3.0. https://www.wikiwand.com/en/Hummocky_cross-stratification#Media/File:HumXSec.JPG
- Şekil 5.59: Antidunes forming in Urdaibai, Spain. Kol35. 2011. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Antidunes_(Urdaibai_estuary).JPG
- Şekil 5.60: Bioturbated dolomitic siltstone from Kentucky. Jstuby. 2010. Public domain. https://en.wikipedia.org/wiki/File:Saluda_bioturbation.jpg
- Şekil 5.61: Lithified mudcracks from Maryland. Jstuby. 2009. Public domain. https://en.wikipedia.org/w/index.php?title=File:Mudcracks_roundtop_hill_MD.jpg
- Şekil 5.62: This flute cast shows a flow direction toward the upper right of the image, as seen by the bulge sticking down out of the layer above. Matt Affolter (QFL247). 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:FluteCast.JPG
- Şekil 5.63: Groove casts at the base of a turbidite deposit in Italy. Mikenorton. 2006. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Groove_casts.JPG
- Şekil 5.64: A drill core showing a load cast showing light-colored sand sticking down into dark mud. Matt Affolter. 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:LoadCast.JPG
- Şekil 5.65: Mississippian raindrop impressions over wave ripples from Nova Scotia. Rygel, M.C. 2006. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Raindrop_impressions_mcr1.jpg
- Şekil 5.66: Cobbles in this conglomerate are positioned in a way that they are stacked on each other, which occurred as flow went from left to right. Verisimilus. 2008. CC BY 3.0. https://commons.wikimedia.org/wiki/File:Imbricated_fabric.jpg
- Şekil 5.67: This bivalve (clam) fossil was partially filled with tan sediment, partially empty. Matt Affolter. 2009. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Geopetal.JPG
- Şekil 5.68: Eubrontes trace fossil from Utah, showing the geopetal direction is into the image. Wilson44691. 2008. Public domain. https://commons.wikimedia.org/wiki/File:Eubrontes01.JPG
- Şekil 5.69: A representation of common depositional environments. Mikenorton. 2008. CC BY-SA 3.0. https://en.wikipedia.org/wiki/File:SedimentaryEnvironment.jpg
- Şekil 5.70: Marine sediment thickness. Note the lack of sediment away from the continents. NOAA. 2019. Public domain. https://ngdc.noaa.gov/mgg/sedthick/
- Şekil 5.71: Diatomaceous earth. James St. John. 2013. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Diatomite_(diatomaceous_earth)_Monterey_Formation_at_a_diatomite_quarry_just_south_of_Lompoc.jpg
- Şekil 5.72: Turbidites inter-deposited within submarine fans. Oggmus. 2016. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Turbidite_formation.jpg
- Şekil 5.73: Contourite drift deposit imaged with seismic waves. Integrated Ocean Drilling Program. 2012. CC BY-SA 3.0. https://en.wikipedia.org/wiki/File:Contourite_sparker_seismic_elongate_drift.png
- Şekil 5.74: Diagram describing wavebase. GregBenson. 2004. CC BY-SA 3.0. https://en.wikipedia.org/wiki/File:Wavebase.jpg
- Şekil 5.75: Diagram of zones of the shoreline. US government. 2012. Public domain. https://commons.wikimedia.org/wiki/File:Littoral_Zones.jpg
- Şekil 5.76: The rising sea levels of transgressions create onlapping sediments, regressions create offlapping. Woudloper. 2009. CC BY-SA 1.0. https://commons.wikimedia.org/wiki/File:Offlap_%26_onlap_EN.svg
- Şekil 5.77: Lithified heavy mineral sand (dark layers) from a beach deposit in India. Mark A. Wilson. 2008. Public domain. https://commons.wikimedia.org/wiki/File:HeavyMineralsBeachSand.jpg
- Şekil 5.78: General diagram of a tidal flat and associated features. Foxbat deinos. 2009. Public domain. https://commons.wikimedia.org/wiki/File:Tidal_flat_general_sketch.png
- Şekil 5.79: Waterpocket fold, Capitol Reef National Park, Utah. Bobak Ha’Eri. 2008. CC BY 3.0. https://commons.wikimedia.org/wiki/File:2008-0914-CapitolReef-WaterpocketFold1.jpg
- Şekil 5.80: A modern coral reef. Toby Hudson. 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Coral_Outcrop_Flynn_Reef.jpg
- Şekil 5.81: The light blue reef is fringing the island of Vanatinai. NASA image by Jesse Allen and Rob Simmon, using data provided by the United States Geological Survey. 2002. Public domain. https://en.m.wikipedia.org/wiki/File:Vanatinai,_Louisiade_Archipelago.jpg
- Şekil 5.82: Seamounts and guyots in the North Pacific. PeterTHarris. 2015. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Distribution_of_seamounts_and_guyots_in_the_North_Pacific.pdf
- Şekil 5.83: Kara-Bogaz Gol lagoon, Turkmenistan. NASA. 1995. Public domain. https://commons.wikimedia.org/wiki/File:Kara-Bogaz_Gol_from_space,_September_1995.jpg
- Şekil 5.84: The Nile delta, in Egypt. Jacques Descloitres, MODIS Rapid Response Team, NASA/sh. 2003. Public domain. https://commons.wikimedia.org/wiki/File:Nile_River_and_delta_from_orbit.jpg
- Şekil 5.85: Birdfoot river-dominated delta of the Mississippi River. NASA. 2001. Public domain. https://commons.wikimedia.org/wiki/File:Mississippi_delta_from_space.jpg
- Şekil 5.86: Tidal delta of the Ganges River. NASA. 1994. Public domain. https://commons.wikimedia.org/wiki/File:Ganges_River_Delta,_Bangladesh,_India.jpg
- Şekil 5.87: The Cauto River in Cuba. Not home~commonswiki. 2007. Public domain. https://commons.wikimedia.org/wiki/File:Rio-cauto-cuba.JPG
- Şekil 5.88: The braided Waimakariri river in New Zealand. Greg O’Beirne. 2016. CC BY 2.5. https://www.wikiwand.com/simple/Braided_river#Media/File:Waimakariri01_gobeirne.jpg
- Şekil 5.89: An alluvial fan spreads out into a broad alluvial plain. Matt Affolter. 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:AlluvialPlain.JPG
- Şekil 5.90: Oregon’s Crater Lake was formed about 7700 years ago after the eruption of Mount Mazama. Zainubrazvi. 2006. CC BY-SA 3.0. https://en.wikipedia.org/wiki/File:Crater_lake_oregon.jpg
- Şekil 5.91: Formation and types of dunes. NPS Natural Resources. 2016. Public domain. https://flic.kr/p/GAn1Pj
- Şekil 5.92: Loess Plateau in China. Till Niermann. 1987. CC BY-SA 3.0. https://en.wikipedia.org/wiki/File:Loess_landscape_china.jpg
- Şekil 5.93: Wide range of sediments near Athabaska Glacier, Jasper National Park, Alberta, Canada. Wing-Chi Poon. 2006. CC BY-SA 2.5. https://commons.wikimedia.org/wiki/File:Glacial_Transportation_and_Deposition.jpg
Yorumlar
Yorum Gönder