Magmatik Süreçler ve Volkanlar - Yararlanılan Kaynaklar
Metin Referansları
- Arndt, N.T., 1994, Chapter 1 Archean Komatiites, in K.C. Condie, editor, Developments in Precambrian Geology: Elsevier, p. 11–44.
- Bateman, P.C., and Chappell, B.W., 1979, Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California: Geological Society of America Bulletin, v. 90, no. 5, p. 465–482., https://doi.org/10.1130/0016-7606(1979)90<465:CFASOT>2.0.CO;2
- Boehler, R., 1996, Melting temperatures of the Earth’s mantle and core: Earth’s thermal structure: Annual Review of Earth and Planetary Sciences, v. 24, no. 1, p. 15–40., doi: 10.1146/annurev.earth.24.1.15.
- Bowen, N.L., 1922, The Reaction Principle in Petrogenesis: J. Geol., v. 30, no. 3, p. 177–198.
- Bowen, N.L., 1928, The evolution of the igneous rocks: Dover Publications, 334 p.
- Carr, M.H., 1975, Geologic map of the Tharsis Quadrangle of Mars: IMAP.
- Earle, S., 2015, Physical geology OER textbook: BC Campus OpenEd.
- EarthScope, 2014, Mount Ontake Volcanic Eruption: Online, http://www.earthscope.org/science/geo-events/mount-ontake-volcanic-eruption, accessed July 2016.
- Frankel, C., 2005, Worlds on Fire: Volcanoes on the Earth, the Moon, Mars, Venus and Io: Cambridge University Press, 396 p.
- Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., and Taylor, R.Z., 2004, Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today, v. 14, no. 4, p. 4., DOI: 10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2
- Luongo, G., Perrotta, A., Scarpati, C., De Carolis, E., Patricelli, G., and Ciarallo, A., 2003, Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties: J. Volcanol. Geotherm. Res., v. 126, no. 3–4, p. 169–200.
- Mueller, S., and Phillips, R.J., 1991, On the initiation of subduction: J. Geophys. Res. [Solid Earth], v. 96, no. B1, p. 651–665.
- Peacock, M.A., 1931, Classification of Igneous Rock Series: The Journal of Geology, v. 39, no. 1, p. 54–67.
- Perkins, S., 2011, 2010’s Volcano-Induced Air Travel Shutdown Was Justified: Online, http://www.sciencemag.org/news/2011/04/2010s-volcano-induced-air-travel-shutdown-was-justified, accessed July 2016.
- Peterson, D.W., and Tilling, R.I., 1980, Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors – ScienceDirect: J. Volcanol. Geotherm. Res., v. 7, no. 3–4, p. 271–293.
- Petrini and Podladchikov, 2000, Lithospheric pressure–depth relationship in compressive regions of thickened crust: Journal of Metamorphic Geology, v. 18, no. 1, p. 67–77., doi: 10.1046/j.1525-1314.2000.00240.x.
- Reid, J.B., Evans, O.C., and Fates, D.G., 1983, Magma mixing in granitic rocks of the central Sierra Nevada, California: Earth and Planetary Science Letters, v. 66, p. 243–261., doi: 10.1016/0012-821X(83)90139-5.
- Rhodes, J.M., and Lockwood, J.P., 1995, Mauna Loa Revealed: Structure, Composition, History, and Hazards: Washington DC American Geophysical Union Geophysical Monograph Series, v. 92.
- Scandone, R., Giacomelli, L., and Gasparini, P., 1993, Mount Vesuvius: 2000 years of volcanological observations: Journal of Volcanology and Geothermal Research, v. 58, p. 5–25.
- Stovall, W.K., Wilkins, A.M., Mandeville, C.W., and Driedger, C.L., 2016, Fact Sheet.
- Thorarinsson, S., 1969, The Lakagigar eruption of 1783: Bull. Volcanol., v. 33, no. 3, p. 910–929.
- Tilling, R.I., 2008, The critical role of volcano monitoring in risk reduction: Adv. Geosci., v. 14, p. 3–11.
- United States Geological Survey, 1999, Exploring the deep ocean floor: Online, http://pubs.usgs.gov/gip/dynamic/exploring.html, accessed July 2016.
- United States Geological Survey, 2012, Black Rock Desert Volcanic Field: Online, http://volcanoes.usgs.gov/volcanoes/black_rock_desert/, accessed July 2016.
- USGS, 2001, Dual volcanic tragedies in the Caribbean led to founding of HVO: Online, http://hvo.wr.usgs.gov/volcanowatch/archive/2001/01_05_03.html, accessed July 2016.
- USGS, 2011, Volcanoes: Principal Types of Volcanoes: Online, http://pubs.usgs.gov/gip/volc/types.html, accessed July 2016.
- USGS, 2012a, USGS: Volcano Hazards Program: Online, https://volcanoes.usgs.gov/vhp/hazards.html, accessed July 2016.
- USGS, 2012b, Yellowstone Volcano Observatory: Online, https://volcanoes.usgs.gov/volcanoes/yellowstone/yellowstone_geo_hist_52.html, accessed July 2016.
- USGS, 2016, Volcanoes General – What are the different types of volcanoes? Online, https://www2.usgs.gov/faq/categories/9819/2730, accessed March 2017.
- USGS, 2017, The Volcanoes of Lewis and Clark – Mount St. Helens: Online, https://volcanoes.usgs.gov/observatories/cvo/Historical/LewisClark/Info/summary_mount_st_helens.shtml, accessed March 2017.
- Wallace, P.J., 2005, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data: Journal of Volcanology and Geothermal Research, v. 140, no. 1–3, p. 217–240., doi: 10.1016/j.jvolgeores.2004.07.023.
- Williams, H., 1942, The Geology of Crater Lake National Park, Oregon: With a Reconnaissance of the Cascade Range Southward to Mount Shasta: Carnegie institution.
Şekil Referansları
- Şekil 4.1: Lava flow in Hawai’i. Brocken Inaglory. 2007. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:P%C4%81hoehoe_and_Aa_flows_at_Hawaii.jpg
- Şekil 4.2: Half Dome, an intrusive igneous batholith in Yosemite National Park. Jon Sullivan. 2004. Public domain. https://commons.wikimedia.org/wiki/File:Yosemite_20_bg_090404.jpg
- Şekil 4.3: Granite is a classic coarse-grained (phaneritic) intrusive igneous rock. James St. John. 2019. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Granite_47_(49201189712).jpg
- Şekil 4.4: Basalt is a classic fine-grained extrusive igneous rock. James St. John. 2019. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Basalt_3_(48674276863).jpg
- Şekil 4.5: Porphyritic texture. Jstuby. 2008. Public domain. https://commons.wikimedia.org/wiki/File:Olearyandesite.jpg
- Şekil 4.6: Pegmatitic texture. Jstuby. 2007. Public domain. https://commons.wikimedia.org/wiki/File:We-pegmatite.jpg
- Şekil 4.7: Scoria. Jonathan Zander (Digon3). 2008. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Scoria_Macro_Digon3.jpg
- Şekil 4.8: Pumice. deltalimatrieste. 2008. Public domain. https://commons.wikimedia.org/wiki/File:Pomice_di_veglia.jpg
- Şekil 4.9: Obsidian (volcanic glass). Note conchoidal fracture. Ji-Elle. 2011. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Lipari-Obsidienne_(5).jpg
- Şekil 4.10: Welded tuff. Wilson44691. 2010. Public domain. https://commons.wikimedia.org/wiki/File:HoleInTheWallTuff.JPG
- Şekil 4.11: Mineral composition of common igneous rocks. Woudloper. 2009. Public domain. https://commons.wikimedia.org/wiki/File:Mineralogy_igneous_rocks_EN.svg
- Şekil 4.12: Igneous rock classification table with composition as vertical columns and texture as horizontal rows. Kindred Grey. 2022. Adapted from Belinda Madsen, An Introduction to Geology. OpenStax. Salt Lake Community College. CC BY-NC-SA 4.0.
- Tablo 4.1: Aphanitic and phaneritic rock types with images. Quartz monzonite 36mw1037 by B.W. Hallett, V. F. Paskevich, L.J. Poppe, S.G. Brand, and D.S. Blackwood via USGS (Public domain, https://commons.wikimedia.org/wiki/File:Quartz_monzonite_36mw1037.jpg). PinkRhyolite by Michael C. Rygel, 2014 (CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:PinkRhyolite.tif). Diorite MA by Amcyrus2012, 2015 (CC BY 4.0, https://commons.wikimedia.org/wiki/File:Diorite_MA.JPG). Andesite by James St. John, 2014 (CC BY 2.0, https://flic.kr/p/oBkKSy). GabbroRockCreek1 by Mark A. Wilson, 2008 (Public domain, https://commons.wikimedia.org/wiki/File:GabbroRockCreek1.jpg). VesicularBasalt1 by Jstuby, 2008 (Public domain, https://commons.wikimedia.org/wiki/File:VesicularBasalt1.jpg).
- Şekil 4.13: Dike of olivine gabbro cuts across Baffin Island in the Canadian Arctic. Mike Beauregard. 2012. CC BY 2.0. https://en.wikipedia.org/wiki/File:Franklin_dike_on_northwestern_Baffin_Island..jpg
- Şekil 4.14: Igneous sill intruding between Paleozoic strata in Nova Scotia. Mikenorton. 2010. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Horton_Bluff_mid-Carboniferous_sill.JPG
- Şekil 4.15: Quartz monzonite in the Cretaceous of Montana, USA. James St. John. 2010. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Butte_Quartz_Monzonite_(Late_Cretaceous,_76_Ma;_Rampart_Mountain,_northeast_of_Butte,_Montana,_USA)_1.jpg
- Şekil 4.16: Half Dome in Yosemite National Park, California, is a part of the Sierra Nevada batholith which is mostly made of granite. Jon Sullivan. 2004. Public domain. https://commons.wikimedia.org/wiki/File:Yosemite_20_bg_090404.jpg
- Şekil 4.17: The Henry Mountains in Utah are interpreted to be a laccolith, exposed by erosion of the overlying layers. Steven Mahoney. 2005. CC BY-SA 2.5. https://commons.wikimedia.org/wiki/File:Henry_Mountains,_Utah,_2005-06-01.jpg
- Şekil 4.18: Laccolith forms as a blister in between sedimentary strata. Erimus and Stannered. 2007. Public domain. https://commons.wikimedia.org/wiki/File:Laccolith.svg
- Şekil 4.19: Bowen’s Reaction Series. Colivine. 2011. Public domain. https://commons.wikimedia.org/wiki/File:Bowen%27s_Reaction_Series.png
- Şekil 4.20: Olivine, the first mineral to crystallize in a melt. S kitahashi. 2006. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Peridot2.jpg
- Şekil 4.21: Norman L. Bowen. Unknown author. 1909. Public domain. https://commons.wikimedia.org/wiki/File:NormanLBowen_1909.jpg
- Şekil 4.22: Norman L. Bowen and his colleague working at the Carnegie Institution of Washington Geophysical Laboratory. Smithsonian Institution. 2010. Public domain. https://commons.wikimedia.org/wiki/File:(left_to_right)-_Norman_Levi_Bowen_(1887-1956)_and_Orville_Frank_Tuttle_(1916-1983)_(4730112454)_(cropped).jpg
- Şekil 4.23: Geothermal gradient. Bkilli1. 2013. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Temperature_schematic_of_inner_Earth.jpg
- Şekil 4.24: Pressure-temperature diagram showing temperature in degrees Celsius on the x-axis and depth below the surface in kilometers (km) on the y-axis. Kindred Grey. 2022. CC BY-SA 3.0. Adapted from Partial melting asthenosphere EN by Woudloper, 2010 (CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File%3APartial_melting_asthenosphere_EN.svg).
- Şekil 4.25: Association of volcanoes with plate boundaries. Jose F. Vigil via USGS. 1997. Public domain. https://commons.wikimedia.org/wiki/File:Tectonic_plate_boundaries.png
- Şekil 4.26: Map of spreading ridges throughout the world. Eric Gaba. 2006. CC BY-SA 2.5. https://commons.wikimedia.org/wiki/File:Spreading_ridges_volcanoes_map-fr.svg
- Şekil 4.27: Pillow basalt on sea floor near Hawai’i. NOAA. 1988. Public domain. https://commons.wikimedia.org/wiki/File:Nur05018-Pillow_lavas_off_Hawaii.jpg
- Şekil 4.28: Black smoker hydrothermal vent with a colony of giant (6’+) tube worms. NOAA. 2006. Public domain. https://commons.wikimedia.org/wiki/File:Main_Endeavour_black_smoker.jpg
- Şekil 4.29: Distribution of hydrothermal vent fields. DeDuijn. 2016. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Distribution_of_hydrothermal_vent_fields.png
- Şekil 4.30: Distribution of volcanoes on the planet. USGS. 2007. Public domain. https://commons.wikimedia.org/wiki/File:Map_plate_tectonics_world.gif
- Şekil 4.31: Basaltic cinder cones of the Black Rock Desert near Beaver, Utah. Lee Siebert via Smithsonian Institution. 1996. Public domain. https://commons.wikimedia.org/wiki/File:Black_Rock_Desert_volcanic_field.jpg
- Şekil 4.32: Diagram showing a non-moving source of magma (mantle plume) and a moving overriding plate. Los688. 2008. Public domain. https://en.wikipedia.org/wiki/File:Hotspot(geology)-1.svg
- Şekil 4.33: The track of the Yellowstone hotspot, which shows the age of different eruptions in millions of years ago. Kelvin Case. 2013. CC BY 3.0. https://commons.wikimedia.org/wiki/File:HotspotsSRP_update2013.JPG
- Şekil 4.34: The Hawaiian–Emperor seamount and island chain. Ingo Wölbern. 2008. Public domain. https://commons.wikimedia.org/wiki/File:Hawaii-Emperor_engl.png
- Şekil 4.35: Mt. Shasta in Washington state with Shastina, its parasitic cone. Don Graham. 2013. CC BY-SA 2.0. https://commons.wikimedia.org/wiki/File:Mt._Shasta_and_Mt._Shastina,_CA_9-13_(26491330883).jpg
- Şekil 4.36: Oregon’s Crater Lake was formed about 7700 years ago after the eruption of Mount Mazama. Zainubrazvi. 2006. CC BY-SA 3.0. https://en.wikipedia.org/wiki/File:Crater_lake_oregon.jpg
- Şekil 4.37: Kilauea in Hawai’i. Quinn Dombrowski. 2007. CC BY-SA 2.0. https://commons.wikimedia.org/wiki/File:Kilauea_Shield_Volcano_Hawaii_20071209A.jpg
- Şekil 4.38: Eruption of Kilauea in 2018 produced high viscosity lava shown here crossing a road. USGS. 2018. Public domain. https://commons.wikimedia.org/wiki/File:USGS_K%C4%ABlauea_multimediaFile-1955.jpg
- Şekil 4.39: Olympus Mons, an enormous shield volcano on Mars, the largest volcano in the solar system, standing about two and a half times higher than Everest is above sea level. NASA. 1978. Public domain. https://en.wikipedia.org/wiki/File:Olympus_Mons_alt.jpg
- Şekil 4.40: Ropey pahoehoe lava. Bbb. 2010. GNU Free Documentation License 1.2. https://de.wikivoyage.org/wiki/Datei:ReU_PtFournaise_Lavastr%C3%B6me.jpg
- Şekil 4.41: Blocky a’a lava. Librex. 2009. CC BY 2.0. https://commons.wikimedia.org/wiki/File:Lava_del_Volcan_Pacaya_2009-11-28.jpg
- Şekil 4.42: Volcanic fissure and flow, which could eventually form a lava tube. NPS. 2004. Public domain. https://commons.wikimedia.org/wiki/File:Volcano_q.jpg
- Şekil 4.43: Devils Tower in Wyoming has columnar jointing. Colin.faulkingham. 2005. Public domain. https://commons.wikimedia.org/wiki/File:Devils_Tower_CROP.jpg
- Şekil 4.44: Columnar jointing on Giant’s Causeway in Ireland. Udri. 2014. CC BY-NC-SA 2.0. https://flic.kr/p/2j1mgwE
- Şekil 4.45: Mount Rainier towers over Tacoma, Washington. Lyn Topinka via USGS. 1984. Public domain. https://commons.wikimedia.org/wiki/File:Mount_Rainier_over_Tacoma.jpg
- Şekil 4.46: Mt. Fuji in Japan, a typical stratovolcano, symmetrical, increasing slope, visible crater at the top. Alpsdake. 2016. CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:Numazu_and_Mount_Fuji.jpg
- Şekil 4.47: Lava domes have started the rebuilding process at Mount St. Helens, Washington. Willie Scott via USGS. 2006. Public domain. https://commons.wikimedia.org/wiki/File:MSH06_aerial_crater_from_north_high_angle_09-12-06.jpg
- Şekil 4.48: Timeline of events at Mount Mazama. USGS and NPS. 2006. Public domain. https://commons.wikimedia.org/wiki/File:Mount_Mazama_eruption_timeline.PNG
- Şekil 4.49: Wizard Island sits in the caldera at Crater Lake. Don Graham. 2006. CC BY-SA 2.0. https://commons.wikimedia.org/wiki/File:Crater_Lake_National_Park,_OR_2006_(6539577313).jpg
- Şekil 4.50: Map of calderas and related rocks around Yellowstone. USGS. 1905. Public domain. https://www.usgs.gov/media/images/simplified-map-yellowstone-caldera
- Şekil 4.51: Several prominent ash beds found in North America, including three Yellowstone eruptions shaded pink (Mesa Falls, Huckleberry Ridge, and Lava Creek), the Bisho Tuff ash bed (brown dashed line), and the modern May 18th, 1980 ash fall (yellow). USGS. 2005. Public domain. https://commons.wikimedia.org/wiki/File:Yellowstone_volcano_-_ash_beds.svg
- Şekil 4.52: Sunset Crater, Arizona is a cinder cone. NPS. Unknown date. Public domain. https://commons.wikimedia.org/wiki/File:Sunset_Crater10.jpg
- Şekil 4.53: Soon after the birth of Parícutin in 1943. K. Segerstrom via USGS. 1943. Public domain. https://commons.wikimedia.org/wiki/File:Paricutin_30_612.jpg
- Şekil 4.54: Lava from Parícutin covered the local church and destroyed the town of San Juan, Mexico. Sparksmex. 2007. Public domain. https://commons.wikimedia.org/wiki/File:Paricutin2.jpg
- Şekil 4.55: World map of flood basalts. Williamborg. 2011. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Flood_Basalt_Map.jpg
- Şekil 4.56: Igneous rock types and related volcano types. Unknown author. Unknown date. “Personal use.” https://www.seekpng.com/ipng/u2t4y3r5o0r5r5w7_table-of-igneous-rocks-and-related-volcano-types/
- Şekil 4.57: General diagram of volcanic hazards. USGS. 2008. Public domain. https://pubs.usgs.gov/fs/fs002-97/old%20html%20files/
- Şekil 4.58: Human remains from the 79 CE eruption of Vesuvius. Gary Todd. 2019. Public domain. https://commons.wikimedia.org/wiki/File:Pompeii_Ruins_Cast_of_Human_Victim_at_Villa_of_the_Mysteries_(48445486616).jpg
- Şekil 4.59: Mount St. Helens, the day before the May 18th, 1980 eruption (left) and 4 months after the major eruption (right). Mount St. Helens, one day before the devastating eruption by Harry Glicken, USGS/CVO, 1980 (Public domain, https://commons.wikimedia.org/wiki/File:Mount_St._Helens,_one_day_before_the_devastating_eruption.jpg). MSH80 st helens from johnston ridge 09-10-80 by Harry Glicken via USGS (Public domain, https://commons.wikimedia.org/wiki/File:MSH80_st_helens_from_johnston_ridge_09-10-80.jpg).
- Şekil 4.60: Image from the May 18, 1980, eruption of Mt. Saint Helens, Washington. Austin Post via USGS. 1980. Public domain. https://commons.wikimedia.org/wiki/File:MSH80_eruption_mount_st_helens_05-18-80-dramatic-edit.jpg
- Figure 4.61: The material coming down from the eruption column is a pyroclastic flow. C.G. Newhall via USGS. 1984. Public domain. https://en.wikipedia.org/wiki/File:Pyroclastic_flows_at_Mayon_Volcano.jpg#:~:text=English%3A%20Pyroclastic%20flows%20at%20Mayon,50%20km%20toward%20the%20west.
- Şekil 4.62: The remains of St. Pierre. Angelo Heilprin. 1902. Public domain. https://commons.wikimedia.org/wiki/File:Pelee_1902_3.jpg
- Şekil 4.63: Sequence of events for Mount St. Helens, May 18th, 1980. Lyn Topinka via USGS. 1998. Public domain. https://commons.wikimedia.org/wiki/File:Msh_may18_sequence.gif
- Şekil 4.64: Aman sweeps ash from an eruption of Kelud, Indonesia. Crisco 1492. 2014. CC BY-SA 3.0. https://commons.wikimedia.org/wiki/File:Ash_in_Yogyakarta_during_the_2014_eruption_of_Kelud_01.jpg
- Şekil 4.65: Micrograph of silica particle in volcanic ash. USGS. 1980. Public domain. https://volcanoes.usgs.gov/volcanic_ash/components_ash.html
- Şekil 4.66: Mud line shows the extent of lahars around Mount St. Helens. USGS. 1980. Public domain. https://www.usgs.gov/media/images/lahars-resulting-may-18-1980-eruption-mount-st-helens
- Şekil 4.67: Old lahars around Tacoma, Washington. USGS. 1905. Public domain. https://www.usgs.gov/media/images/lahar-pathways-events-heading-mount-rainier-map-showing-t
Yorumlar
Yorum Gönder